386

Minimum Size h-v Drawings
Peter Eades, Tao Lin ! and Xuemin Lin 2

Abstract

Trees are one of the most commonly used structures in computing, and
many techniques for the visualization of trees are available. These techniques
usually aim to find an aesthetically pleasing layout for a tree on a screen of
limited size. This paper presents an algorithm for “h-v tree” drawing. The
algorithm can be used to find a drawing of minimal “size”, where “size” has a
variety of definitions: (including area). Two applications of the algorithm are
explicitly presented.

1 Introduction

Many tree drawing algorithms [1, 3, 6, 8, 7, 10, 11, 12] have been developed to
service needs in visualization and documentation systems. The aim of most of these

algorithms is to draw a tree with in a limited space, subject to a variety of conventions.

In this note we show how to obtain a minimal size drawing subject to some constraints
defined below. We show how the algorithm can be applied to a visualization problem.

Suppose that T is a rooted binary tree with n nodes. A drawing = of T assigns
a location my = (2, yu) to each node u of 7. The drawing implicitly assigns the open
line segment between , and 7, to each edge (u, v) of T'. The drawing is planar if for
each pair (u,v) , (s,t) of edges of 7, the line segments representing (u,v) and (s, 1)
do not cross. The drawing is a grid drawing if z, and y, are integers for each node u.

A planar grid drawing of T = (V, 4) is a h-v drawing if (1) each edge is rep-
resented as either a horizontal straight line proceeding from the parent rightwards
to the child, or a vertical straight line proceeding from the parent downwards to the
child (that is, 2, < 2y, yu > y» and either z, = z, or Yu = Yy for each edge (u,v) of
T); and (2) for each vertex u with children v and w, the enclosing rectangles of the
subtrees under v and w are disjoint.

A sample h-v drawing is in Figure 1.

!Department of Computer Science, University of Newcastle, Callaghan NSW Australia 2308.
Fax: 61-49-216929, Phone: 61-49-216034, e-mail: eades@cs.newcastle.edu.au

*Department of Computer Science, University of Queensland, Queensland Australia 4072. e-mail:
Ixue@cs.uq.oz.au

387

.“1—."1—1i 2
e

.

E

]

Figure 1: h-v tree

The area of a grid drawing is

(=« ~ mip =) (maxv. — mipy.)

that is, the area of the smallest rectangle which encloses every node of the draving.

It is shown in [2] that complete binary trees and Fibonacci trees have linear
area h-v drawings, and every binary tree on n nodes has a h.v drawing with area
O(nlogn). These results are significant because a h-v drawing can be transformed
easily into an “upward” drawing without asymptotically increasing the area (see [2]).
Further, the results show that h-v drawings are feasible on limited screen /page ireas,

In this note we present an algorithm which gives a minimum size h-v drawing
for a rooted tree in time O(n?). The algorithm is based on results in [3]. Hers the
size of a drawing with width w and height A is Y(w, h), where 4 is a function which
is nondecreasing in both coordinates. Examples of size functions are

1. area: ¥(z,y) = zy;
2. perimeter: P(z,y) = 2(z + y);

3. height for a given width: Y(z,y) =y if z < n, Y(z,y) = oo for x >3

388

4. minimum enclosing square: ¥(x,y) = max(z,y),

The area size function is most commonly used as a measure for layout algo-
rithms (especially for VLSI layout) but the others are sometimes more relevant for
visualization purposes. For example, the third function is useful for the situation
where the width of the page is fixed and it is necessary to minimize the height of the
drawing; the fourth function effectively measures the maximum amount by which a
drawing can be scaled up on a square screen. The algorithm in the next section can
be applied to any size function.

A grid drawing is reduced if

o for each integer i.with mingey 2, < i < maXyuev Ty, there is a node v with
z, = i; and

o for each integer j with mineey y. < j < MaX.ev ¥y, there is a node v with
Yo = .

Since h-v drawings have only vertical and horizontal edges, one can assume without
loss of generality that h-v drawings are reduced; we will make this assumption im-
plicitly in the remainder of this paper. An immediate consequence of this assumption
is that the width and height of a h-v drawing of a tree with n nodes are both at most
n—1L

2 The Algorithm

Suppose that 7 is a minimum size h-v drawing of a tree T’ = (V, A). Denote the width
and height of the smallest rectangle containing every node of the subtree under u by
X, and Y, respectively. .

If u is a leaf then clearly X, =¥, =0.

If u has two children v and w, then there are essentially only four ways o
arranging the subtrees T, and T, of v and w respectively, as in Figure 2. :

Thus either

L (Xo,Ye) = (Xo + Xu + 1, max(Y, + 1, ¥o)), or
2. (Xu,Ya) = (Xo + Xu +1,max(¥,, Yy +1)), or
3. ﬁuﬂ-: Wn.u = magﬁke + __.M.sw» Y.+ Y.+ :n_ or

4. (Xu, Vo) = (max(Xy, Xy + 1),Y, + Y, +1).

depending on the arrangement.

. Hm u has one child v, then there are only two possible arrangements: v i either
one unit below u or one unit to the right of u. Thus either (X, K) = (X, Y, + 15
or (X.,Y.) = (X, + L,Y,). _ ’

For each node u of T', define a set P, as follows.
If u is a leaf, then P, = {(0,0)}.

If « has one child v, then P, is the union of K Yot 1) X V) EP Y mid
{(X. +1,Y): (X..Y,) P,}. {(Yok) } an

u
L & ®
Ty f 4 i

lllllllll

L

L R

Figure 2: possible arrangements

If u has children v and w, then P, is the union of the following four sets (each
set corresponds to-one of the four cases above):

L A(X, + Xu +1,max(Yy +1,%)) : (X, Yo) € oy (X, Vo) € Po)

390

2. {(max(X, +1,X.),Ya + Y, +1): (X,,Y,) € P, (X, Yo) € Py}
3. {(Xy + Xy + 1,max(Y,, Y, + 1)) : (X,,Y,) € P, (X, Yo) € P,}

4 {(max(Xy, Xo +1), Y + Yo +1) : (X,, Y,) € P, (X,) € P}

It is clear that P, represents the dimensions of all possible enclosing rectangles
of a reduced drawing of the subtree under node w.

We say that a pair (c,d) of integers dominates (a,b) if a > ¢ and b =id)
Basically, (¢,d) dominates (a,) if a rectangle with dimensions (@, b) will fit inside a
rectangle with dimensions (c,d). The definition of “size function” v ensures that if
(¢, d) dominates (a,b) then 1b(c, d) > 4(a, b); thus if (a, b) € P, dominates (e,d) € P,
then (a,b) will never be involved in an optimal layout and may be discarded.

An atom of a set S of pairs of integers is an element of S which dominates no
other element of S; let A, denote the set of atoms of P,.

We will consider the case of computing A, for a node u with two children v
and w. Consider the first two possibilities for (X,,Y,) above. It is clear that one
dominates the other and can be an atom of P,; the dominated one has value

(Xv + Xy + 1, min(max(¥, + 1,Y,,), max(¥,, Y, + 1)))

Similarly, only one of the second two possibilities can be an atom of P,. This gives
the following Lemma.,

Lemma 1 Suppose that u has children v and w. Then A, is the set of atoms of the
union of g

1. AR = {(X, + X, + 1, min(max(Y, + LY,),max(Y,, Yy + 1)) : (X,,¥,) €
\.._.eu ﬁ.uw‘?; V‘Eu € _,Sw

2. AYER _ {min(max(X, + 1, X,,), max(X,, X, + 1)), Y. + Y, + 1} : (X, Y,) €
kn._é._ m‘vn‘e.; M\Eu € xm._.ﬂ__w

We can compute AY#® with the following algorithm from [3], adapted from [9].
Here the sets A, and A, are represented as lists A, = {(a1,b,), (az,bs), ..., (ak, bi)}
and Ay, = {(c1,d1), (¢2,da), ..., (c1,di)}, with a; > aj and ¢; > ¢; for i < 5. Note that
since these are sets of atoms and the first coordinates are in strictly decreasing order,
b; < b; and d; < d; for 1 < j.

|
1
|
:

391

ALGORITHM VerticalMerge

i—1;7«1;

WHILE : <k and j <1 DO
P — Agwnmﬁb@xﬁnm._-H,n.d.u_am.xﬁn:nu_+Cv“w,.+mm_ +1) ;
IF p does not dominate the last element added to AYVER THEN add p to ATER,
IF a; > ¢ THEN ¢ « i+ 1 ELSE j « j + 1;

This algorithm produces AY®® in decreasing order of first coordinate and in-
creasing order of second coordinate. It clearly has linear time complexity. One can
use a similar “Horizontal Merge Algorithm” to compute the list AZOR, A third merge
algorithm, to form A, from AYFR and AFOF and discard any dominated pairs, can
be constructed easily. |

These merge algorithms can be applied in a bottom-up traversal of a tree to
compute A, for the root r. A minimum size element of A, can be chosen by a linear
search,

Further, note that since every element of A, is an atom, and no two atoms
have the same width, we can deduce that |A,| is at most the number of nodesin the
subtree under u. Our Theorem follows.

Theorem 1 A minimum size h-v drawing of a binary tree with n nodes can be found
in time O(n?). O

More complex analysis of our algorithm gives better results for particuler size
functions; for example:

Theorem 2 A minimum area h-v drawing of a binary tree with n nodes can be found

in time O(ny/nlogn). O

These Theorems compliment the bounds established in [2]. However, the prob-
lem of finding a linear time algorithm for minimum size h-v drawings is open

3 Applications

The algorithm described above forms part of Snake, an object-oriented system devel-
oped by the second author for visualizing relational information. Here we mention
two areas where Snake has used our algorithm in visualization.

392

Firstly, a system for animating LISP programs is described in [5). This system
uses diagrams of “S-expressions” such as:

(ABN((C)D)(EYF)GH)). (1)

The diagram composition rules for S-expressions in [5] essentially define the
h-v drawing convention. Kamada gave variety of layouts using this convention for
the expression (1). The layout of the expression (1) created by Snake using the
algorithm described in the previous section is illustrated in Figure 3. This layout has
the minimal size. :

ﬂ .[._..n.n.lm.:_.wrm..r._..mwd._..nN1!a.¢:H o .n_.u:m . i
System _ |Structure " [tayout | Editor | Query | Constraints| Printout

~

Redraw
SetGrid

Undo

Accept
§ Select
i Move

Dealete
Getinformation
§ Auxiinfor

Figure 3: Layout for the LISP expression

We can also use this algorithm for creating the layout for some other kinds of
diagrams. A layout for a proof diagram is in Figure 4; interested users can get more
details of the concepts illustrated by this diagram from [4].

(B TreeProveDiagramVUIVUI th2 En

System |Layout | Editor | Query | Constraints| Printout |

»

SetGrid ==k

Relatlon

ChangeLabel
Getinformation
Auxiinfor

Figure 4: Proof Diagram

References

(1] A.Bruggemann-Klein and D. Wood. Drawings trees nicely with tex. Department
of Computer Science, University of Waterloo, 1987.

[2] P. Crescenzi, G. DiBattista, and A. Piperno. A note on optimal area algorithms
for upwrd drawings of binary trees. Technical Report RAP.11.91, Dipartmiments
di Informaticd e Sistemistica, Universita degli Studi di Roma “La Sapienza”
1991.

(3] P. Eades, X. Lin, and T. Lin. Two tree drawing conventions. (to appear in
“Computational Geometry & Applications”), 1991.

E»_.mﬁ_.m.m.?:nuna;m&n:%R&ram&o@.vﬁ&?Ran&un mn.moanu.m.absna
Development, PhD thesis, University of Queensland, 1992. g

[5] T. Kamada. Visualizing Abstract Objects and Relations, volume 5 of Series in
Computer Science. World Scientific, 1939,

394

{6] J. Manning and M.J. Atallah. Fast detection and display of symmetry in trees.
Congressus Numerantium, 1989,

[7] S. Moen. Drawing dynamic trees. Technical Report LiTH-IDA-R-87-24, Depart-
ment of Computer and Information Science, Linkoping University, 1987.

[8] E. Reingold and J. Tilford. Tidier drawings of trees. IEEE Transactions on
Software Engineering, SE-T(2):223-228, 1981.

[9] L. Stockmeyer. Optimal orientations of cells in slicing floorplan designs. Infor-
mation and Control, 57:91-101, 1983.

[10] J.S. Tilford. Tree drawing algorithms, Master’s thesis, Department of Computer
Science, University of Illinois at Urbana Champaign, 1981.

[11] J. Vaucher. Hun.mﬁ.% printing of trees. Software Practice and Ezperience, 10(7):553
— 561, 1980.

[12] C. Wetherall and A. Shannon. Tidy drawings of trees. IEEE Transactions on
Software Engineering, SE-5(5):514 — 520, 1979.

