Drawing Free Trees

Peter Eades

Department of Computer Science !
University of Newcastle
Newcastle, NSW
Australia, 2308
e-mail: eades@cs.newcastle.edu.au

Abstract. Trees are models of various structures in computing and it is not surprising
that considerable efforts have been made toward effective drawing algorithms for them.
This paper discusses drawing algorithms for “free trees”, that is, trees with no special
root. The aim of these algorithms is to provide a drawing which satisfies several aes-
thetic criteria, such as avoiding edge crossings, minimizing variance in edge length, and
keeping vertices a reasonable distance apart. In this paper we measure the effectiveness
of the algorithms presented by proving or disproving that they achieve such criteria.

1. Introduction

Trees are models of various structures in computing and it is not surprising that
considerable efforts have been made to create effective drawing algorithms for
them. Most interest has been in drawing rooted trees [6,13,18,20,22,26,27) be-
cause such trees are ubiquitous.

In this paper we consider drawing algorithms for “free trees”, that is, trees with
no special root. A drawing of a free tree is in Figure 1.

Such trees are frequently used in Combinatorial Mathematics, and occur in
Computing as spanning trees and networks. But the most significant motivation
for drawing them is that all general graph drawing systems include a module for
drawing trees. The reason lies in the most common method for drawing a con-
nected graph. A connected graph is partitioned into biconnected components and
each biconnected component is drawn separately. Roughly speaking, the bicon-
nected components form a tree structure (called the “block-cutpoint tree™), and
we need a free tree drawing algorithm to “glue” the drawings of the biconnected
components together. The method is described more fully in [17] and illustrated
in Figure 2.

Compared to the wealth of literature on rooted trees, there little previous work
on drawing free trees (the subject is mentioned in passing in [3,5,7,8,12,17], and
more explicitly in [15,10]). The algorithms which are used in graph drawing sys-
tems are usually naive and attributed to folklore. In this paper we survey and
discuss these algorithms and some of their variations.

1 Written while the author was visiting the International Institute for Advanced Study of Social Infor-
mation Science, Fujitsu Laboratories Ltd., 140 Miyamoto, Numazu-shi, Shizuoka 410-03, Japan

Bulletin of the ICA, Volume 5 (1992) 10-36

L imr aE mee aterm  ®  mepe cvtmam et



Figure 1: Example of a free tree

The aim of graph drawing algorithms is to provide a drawings which satisfy
several aesthetic criteria, such as

e edge crossings are avoided.

e edges are as straight as possible.

e the length of edges is uniform.

e the distance between vertices is not too small.

There are many other criteria which are desirable; the above list is just a sample.
In many cases it is possible to state such criteria in a precise mathematical way
and prove or disprove that a particular algorithm achieves a particular criterion, or
even to prove that achieving a particular criterion is NP-hard: see, for instance, [3].
Here we attempt to measure tree drawing algorithms against the kind of criteria
above.

2. Terminology

Graph-theoretic terminology is mostly from [2]. The degree of vertex v is denoted
by deg,. The graph-theoretic distance, or distance, between two vertices u and v
is the number of edges on the path joining u and v and is denoted by d(u, v). The
diameter of atree T = (V, E) is max, ey d(u, v).

The Euclidean distance between two points e and b in the plane is denoted by
lla ~ ]|

All drawings discussed represent edges as straight lines between vertices, so a

11



culpoinls

)
/\ 2
1
biconnected componcnts
O O O
‘
O C
| sz
block-cutpoint tree
A x B s
O o
\]/ %4\
3 Oc

Figure 2: Block-cutpoint tree

drawing is completely determined by the positions of the vertices. Thus a drawing
pofatree T = (V, E) isafunctionp : V — R?; p(u) is the location of vertex u.
Where confusion is unlikely we sometimes use the same symbol to denote both a
vertex and the position of the vertex.

3. Radial Drawings

Radial drawings are well known in the folklore, probably originating in Ron
Read’s GRAX system (see [17]) of the late 1970s. Algorithms for such drawings
are very similar to simple algorithms for drawing rooted trees. A root is chosen
and drawn at the centre of the page. Nonroot vertices are arranged on concentric
circles about the root. The subtrees of a vertex are drawn within annulus wedges
of sizes determined by the sizes of the subtrees.

The basic concepts of this method are illustrated in Figure 3.

12



*  Annulus wedge

for sublree
under v

Figure 3: Radial algorithms

There are many variations of the basic method, depending on the choice of root,
the radii of the circles, and the method for determining the size of the annulus
wedge: see [1,7,15,17]. We shall describe a particular variation called Algorithm
R, below.

The root is chosen to be the centre of the tree. A central vertex of atree T =
(V, E) is a vertex ¢ such that

max d(c, v)

vev
is minimized. It can be shown [2] that a tree has either a unique central vertex
or two adjacent central vertices. If T has a unique central vertex then this is the
centre; otherwise the centre is the edge joining the two central vertices. The centre
can be found in linear time using a simple leaf pruning algorithm: If T contains
any nonleaves, then remove all the leaves of T to form a new tree T”; the centre
of T is the same as the centre of 7.

13



The choice of a root means that we can use the terminology of rooted trees. For
instance, the depth of a vertex v is the distance between v and its closest central
vertex. The subtree under v for some vertex v consists of vertices and edges on
paths between v and a leaf which do not contain a central vertex.

If the centre is a vertex then it is placed at the centre of the page; if the centre
is an edge then it is drawn as a horizontal line of length § (where § is a constant)
in the centre of the page.

Non-central vertices are assigned to concentric circles Cy, G, ... , C, centred
at the centre of the page, where k is the largest depth of a leaf. If the centre is a
vertex then the radius of C; is (1 + 1) 8, otherwise itis (1 + %—)6. Vertices of depth
1 are placed on circle C;. Thus, in a sense, vertices are placed as close as possible
to the root.

The width w(u) of a vertex u is the number of leaves in the subtree under u.
It seems reasonable to draw the subtree under v in an annulus wedge with angle
proportional to w(v). However, this can lead to edge crossings, because an edge
with endpoints within an annulus wedge of large angle can extend outside the
annulus edge and intersect other edges, as in Figure 4.

The edge
(u,v)
“escapes”
the annuly
wedge .

Z
annulus wedge

for the subuce

under v
4

Figure 4: Edges escaping from an annulus wedge

14



The solution is to restrict the vertices to a convex subset of the wedge. Suppose
that v lies on C;, and that the tangent to C; through v meets C;,1 at a and b as in
Figure 5. e

-0

Figure 5: Convex subset of the wedge

Note that the unbounded region F' in Figure 5, formed by the line segment ab,
and the radii through a and b, is convex; thus any edge with endpoints in F' cannot
leave F'. So we restrict the subtrees under v to lie within the region F. If the
radius of C; is p then we denote the angle between the radii through a and b by

7( p); note that
— -1 p
7(p) = 2 cos <_p+6)'

The restriction to F' effectively restricts the subtrees to lie within a wedge of angle
7(p).

The algorithm is stated below using this notation.  The subroutine
DrawSubTreel (v, p, a1, a3 ) draws the subtree rooted at vertex v in the annulus
wedge {(7,0) : v > p,an <0< an}.

15



Algorithm Ry (T = (V, E): tree)
Ifthe centre of T is a vertex v,
then DrawSubTreel(v,0,0,27)
else (u,v) —centreof T
DrawSubTreel(y, £, 3%, )
DrawSubTreel(v, £, §, 3)

Algorithm DrawSubTreel(v, p, a1, a2 )

1. p(v) « the point with polar coordinates (p, %152 ).

2 frp) <o —m

thmat—%;ao—"* =1

elses — 2ol o — o

3. foreach child u of v do
DrawSubTreel(u,p+ §, a0, a + 8 * w(u))
a+—a+s*xw(u)

Figure 6(a)—(d) shows samples of the output of K, .

It is immediate that Algorithm R; runs in linear time.

Next we prove some that the output of Algorithm R; satisfies some of the de-
sired aesthetic criteria.

The first result establishes planarity.

Theorem 1. The output of Algorithm R, is planar.

Proof: Note that every edge lies within an annulus between C; and C;, 1 for some
. However, it is impossible for two such edges to cross, because distinct subtrees
are assigned to disjoint annulus wedges by Algorithm R;. |

The next result bounds the variation in edge length.

Theorem 2. Suppose that Algorithm R, returns a drawingp : V — R? ona
tree T = (V, E) of diameter D > 2 and largest degree A, and

L= max_[ip(u) —p(v)l,

l= (‘{f'}ggEHp(u) — p(v)|]-

Then

le\[ug(D—Z) (1—008 ((I*Al—l>cos_l (1—’123»)

Proof: For notational convenience assume that § = 1. It follows that [ > 1.
Now consider a vertex v on circle C; of radius p. We shall compute a bound on
the length of edges from v to its children.

16



Figure 6:(a)—{d): Sample output from Algorithm R,

The subtree under v is drawn within an annulus wedge with angle £; note from
Algorithm R, that

B<7(p). | (1)

Suppose that Algorithm R, places a child u of v at a radial angle @ from v as in
Figure 7.
Note that Algorlthm R, ensures that

1 \B

17




Figure 7: Radial angle for Algorithm R,

A simple calculation reveals that

lp(u) — p()]| = V/1+2p(p+ 1)(1 — cos 0). (3)

Using (1) and (2) we obtain

lip(u) — p(v)|| = flp, w(v)) )

flp,w) = .\{1 +2p(p+ 1)(1 - cos ((1 -~ -::_) T{p})- (5)

Note that f is increasing in p. Now suppose that v is a vertex of maximum degree
A. Since there are w leaves in the subtree under v, and vertices have at most A — 1
children, there must be a descendant of v on the circle C, which has

- i+[log, . w(v)]»
radius p + [log, _, w(v)]. Thus the diameter D of T satisfics

where

D2 2(p+ [log, 4 (w)]). ©)

18



A ledious argument shows that the function f in equation (6) satisfies

f(p,w) < flp+ [logy_(w)]—1,4 -1). (7)
The result follows using inequalities (6) and (7). B

The bound in Theorem 2 is worst for graphs with high diameter and a vertex of
high degree near the perimeter: an example is in Figure 8.

Figure 8: Worst case for edge lengtis for Algorithm R,

The following tabulation of D, A, and the maximum value of L /[ in Theorem 2
gives an idea of the size of the bound.

D A maxL/l

10 3 1.7
50 3 3.6
50 5 5.3
100 10 8.9
100 18 9.4

A simple consequence of Theorem 2 is helpful in giving a rough understanding
of the length of edges.

Corollary 1. Suppose that Algorithm R, gives adrawing p: V — R?* fora tree
T =(V, E) ofdiameter D > 2, and

L= max |lp(e) - p(v)l,

1= i I~ O
Then
L<IVD-1
|

We can also show that the vertices of in an K, drawing are separated by a dis-
tance which depends on the diameler. We measure the ratio of this minimum
scparation distance to the maximum distance between two vertices.

19



Theorem 3. Suppose that a tree of diameter D > 2 and w leaves is drawn by
Algorithm R, . Define

= ﬂgllﬂu) — ()|,

k= mi — .
. fullp(u) p(v)||

: . 1 (1 K
k > min (l,Ssm (w_lcos (§>>> D

Proof: Again assume that § = 1. The Theorem clearly holds for w = 2, so we
only consider the case w > 3.
Since the entire drawing is enclosed in a circle of diameter D, we have

K<D (8)
If u and v are on separate circles, then

lip(uw) —p(v)|| > 1

and the Theorem holds.

Now suppose that v is on a circle of radius p, and the angle of the wedge as-
signed to v is A,. Denote p, sin( 4¢) by a,; note that for any two vertices u and v
on the same circle,

) — p()]| > au + ay. )

We will show that for every vertex v,

3 . 1 a /1
a,,z-z—sm(w_lcos <3)> (10)

The Theorem then follows from (8), (9) and (10).

Firstly note that either
2nw(v)
- AN 11
o= = (11)
or for some ancestor 2 of v,
ﬂv = T(pl)w(v) . (12)
w( 2)

In case (11), we have

G, = P, SiN (ZW:‘;(”)) > sin (1)

w

20



Figure 9: Worst case for vertex separation for Algorithm R,

But a simple check reveals that for w > 3,

sin (£)>isin —1—cos‘1 L]
w/ = 2 w-1 3 )

For case (12) observe that since w(u) > 1 and it is impossible for every leaf to

be in the subtree under 2,

T(ps)

ﬂvzw—l'

Also, since z is an ancestor of v, p: < pv— 1 and thus 7(p;) > 7(py — 1). Thus

T(pv - 1)

w—1

By >

and it follows that

ay > Py Sin (ip"—_l-)—> = p, sin (—-1~—1 cos ™! (p"——-l-)> N &)

2(w —_ 1) w — pu
But the right hand side of inequality (13) is increasing with p,, and the minimum
value of p, is 3; the inequality (10) follows. g

The bound in Theorem 3 is worst for graphs with high diameter and many
leaves: an example is in Figure 9.

21



The following tabulation of D, w, and the minimum value of k/ K in Theorem 3
gives an idea of the size of the bound. The Corollary below also gives a simple
expression of the bound.

D w K/k

20 50 0.0065
20 100 0.0032
50 100 0.0020
50 200 0.0010

Corollary 2. Suppose that Algorithm R, gives adrawingp: V — R? fora tree
T = (V, E) of diameter D > 2 with w leaves, and

K= mgllp(u) —p(v)|,

k= u’u'g‘}gﬂllp(u) —p(v)||.

Then

All the edges in the drawing are straight lines. To make it easy to follow paths
in the drawing, it is desirable that paths follow a straight line as well. We can
show that although paths of vertices of degree two are not always straight in R;
drawings, long paths are mostly straight.

Theorem 4. Suppose that v is a vertex of degree 2, in the output of Algorithm
R: on T, and the degree of at least one neighbor of v is 2. Then the edges incident
with v form a straight line. ¥

A minor variation of Algorithm R; is sometimes useful. Basically, we place
each vertex v on the circle Ci_; where k is the maximum depth of a vertex in
the tree and 1 is the distance from v to the closest leaf. To write this algorithm
concisely, we denote the maximum distance from a vertex v to a leaf in the sub-
tree under v by h(v). Note that h can be computed in linear time. The result is
algorithm R, below.

22



Algorithm Ry

If the centre is a vertex v,

then DrawSubTree2(v,0,0,2 )

else (u,v) « centre of T
DrawSubTree2(u, (h(u) + 0.5)86, '321. 7)
DrawSubTree2(v, (h(u) + 0.5)8, £, 3%)

Algorithm DrawSubTree2(v, p, a1, a2)
1.place v at the point with polar coordinates ( p, 25°2).
2ifr(p) < az —ay

mmsc——%;ae—ﬂ*—"&ﬂl

clse 8 «— 25;’%'-‘- o — a

3.for each child u of v do
DrawSubTree2(u, A(u),a,a+ s« w(u))
a—a+sxwiu)

Figure 10(a)~(d) shows samples of the output of R;.

Planarity of the output can be established in a similar argument as for Algorithm
R;. The length of edges varies more widely for Algorithm R, than for R,, but
R> tends to have better minimum distance between vertices.

Bemard [B] has noted that a radial layout similar to i; can be used to draw trees
symmetrically. It is comparatively easy to find automorphisms of trees (see, for
example, [9]), and all automorphisms preserve the centre and the depth of vertices.
Further symmetry oriented radial algorithms are presented in [10,15].

4. Spring Drawings

Spring algorithms use a concept of energy n defined for each drawing of a graph.
The energy is defined so that smaller values of  indicate “nicer” drawings. The
algorithms try to find drawings with n as small as possible. A particular spring
algorithm is defined by a choice of energy function n and a method for minimizing
.

The simplest spring algorithm is from [5]. Intuitively adjacent vertices are con-
nected with logarithmic strength “springs”, and non-adjacent vertices repel each
other with a force governed by an inverse square law. Note that a small energy
indicates that the distance between adjacent vertices is about one unit and non-
adjacent vertices are reasonably far apart. A drawing with a locally minimal en-
ergy may be found by a steepest descent method: an initial layout is chosen, then
the layout is progressively improved by moving each vertex to a position with less
energy. Trees drawn with this algorithm are shown in Figure 11(a)—(d).

An often noted problem with this approach is that it is possible for a planar graph
to give a nonplanar drawing, even for trees: see [4,5,8]. For example, Figure 12
shows a drawing with locally minimal energy and many crossings.

One can overcome this problem by choosing the initial layout to be planar. We

23



Figure 10(a)~(d): Sample output from Algorithm R,

conjecture, but have been unable to prove, that this approach gives a planar draw-
ing.

Conjecture. Suppose that a drawing of a tree is obtained by a simple spring
algorithm described above, using the the output of Algorithm R, as the initial
layout. Then the drawing is planar.

In fact it seems to be very difficult to prove properties of spring algorithms:
with the exception of [14], most research in this area is informal, using extensive
examples rather than mathematical proof to support claims. However, we we can
show that another spring algorithm adapted from [23,24] gives planar drawings.
Suppose that the leaves of a tree drawing are fixed in position, and edges are re-

24




Figure 11:(a)~(d): Sample output from simple spring algorithm

placed by lengths of a kind of elastic cord. This elastic cord exerts a force on its
endpoints proportional to the square of distance between the endpoints, so that the
force acting on a vertex v is

Y llp(w) — p(v)|I*.

(uv)EE

The sum of these forces is minimized when the partial derivatives are zero, so a
minimum energy layout requires that

Moy =—— 3 alw) (14)

Y (uv)€EE

25



Figure 12: Poor result from simple spring algorithm

for each vertex v. The equations (14) simply say that each nonleaf vertex is located
at the barycentre or average of the locations of its graph-theoretic neighbors.

The positions of the leaves can be fixed by one of the two algorithms R; and
R; in the previous section. The equations may be solved by a simple numerical
iteration (see [17]). For instance, we can define Algorithm T as follows:

Algorithm Ty
Algorithm DrawSubTree2(v, p, a1, a2 )
1.Apply Algorithm R;
2 Repeat until error is small:
for each nonleaf v do p(v) « Fl;; E-GN, p(u)

We can similarly define Algorithm T using R, instead of R, to fix the leaves.
Results of Algorithms T} and T, are in Figure 13.

Theorem 5. The output of Algorithm T is planar. |

Proof: Consider the graph formed from a tree T' by joining leaves in a cycle in
depth-first order. This is a planar 3-connected graph, and if it is drawn by Algo-
rithm T3, the leaves form a convex polygon. It follows from Tutte’s Theorem [23]
that the drawing is planar. |

We believe, but have been unable to prove, that this claim also holds for 77 .
Conjecture 2. The output of Algorithm T is planar.
Both algorithms give straight line paths of vertices of degree 2.

26



Figure 13: Sample output from 7 and T

Theorem 6. Suppose that v is a vertex of degree 2. Then, for both Algorithms
T\ and T, the edges incident with v form a straight line. |

Proof: This is a simple consequence of the equations (14). ¥
The minimum distances are sometimes better for Algorithms 77 and 73 than
for R and R3, but often they are worse, as one can see from Figure 14.

»/

'Figure 14: Poor result from 75

The problem is that many vertices gather close together at the leaves. This can
be overcome to some extent by weighting the average in the last line of Algorithm

27



T, above, that is, replace the last line by

p(v) = Y tuwp(u)

uENv

where the weights t,,, chosen so that or each v,

> tw=1.

uEN,

For example, so that vertices may move closer to the centre of the diagram (to
avoid situations such as in Figure 14) we can define:

. - hw
T Yuen, h(w)

where h(u) denotes the maximum distance of u a leaf in the subtree under u
(where the root is a central vertex as in the previous situation). The result of
applying this to the graphs in Figure 14 is in Figure 15.

Figure 15: Sample from weighted version of T

Note that the problem of drawing a tree with fixed leaf positions so that edge
lengths are all the same is NP-hard [28].

28



Kamada [10] describes another spring algorithm aimed at radial drawings of
trees, based on [11]. Intuitively, every pair u, v of vertices is joined by spring s,,,,
with Hooke’s Law strength and the zero energy length of s, is d(u, v). A radial
drawing is used as an initial drawing, and the energy is lowered subject to the
vertices remaining on their original concentric circles about the centre. Intuitively,
the vertices are allowed to “slide” around their circles, but not to leave the circles.
In this way, it seems that the planarity of the radial drawing is preserved (but this
property has not been proved).

Other variations [4,8,11,23,24] cover a range of energy functions. In partic-
ular, the energy function defined in [4] encodes variety of aesthetics, including
the minimization of edge crossings; however, to minimize energy, slow simulated
annealing process is necessary.

An attractive aspect of these algorithms is that their output tends to appear sym-
metric. It can be shown [14], under reasonable assumptions on the energy func-
tion, that there is a drawing with locally minimal energy which displays a maximal
set of automorphisms of the input graph as symmetries.

5. H-tree Drawing

The discussion in this section is limited to binary trees, that is, trees where no
vertex has degree larger than 3.

The H-tree layout for a complete binary tree, illustrated in Figure 16, is well
known in the VLSI layout folklore (though originally due to Shiloach [19]) as a
method for obtaining a compact layout of a complete binary tree.

Esposito (7] noted that the H-tree has some attractive properties as a “nice”
drawing. It is planar, and all edges are either horizontal or vertical straight lines.
However, for binary trees which are not complete, the layout can be very poor, as
in Figure 17.

Here the vertices near the leaves are exponentially close to each other. In this
section we describe a simple variation which keeps a reasonable minimum sepa-
ration between vertices.

For this variation, an edge is chosen as a root. We chose an edge whose re-
moval separates the tree into components such that the difference in the number
of vertices in each component is minimal.

For each vertex v, the subtree under v is drawn in a rectangle with v inside.
Four parameters N,, E,, S,, W, are computed for this rectangle representing the
distances from the root v to the perimeter of the rectangle in directions north, east,
south and west respectively, as illustrated in Figure 18.

If v has children u and w and the parent of v is to the west of v, then the following
equations may be used to compute the parameters of v from the parameters of u

29



—9

i H

I

SRR

T

' & 4

[

T




Figure 18: Parameters for subtree size

and w:
Ny=N,+8,+6

Ev=max(E,, Ey,)
Sv = Ny + Sw +46
Wu = maX(Wu,Ww),

where § is a constant. If v has a single child u and the parent of v is to the west of
v, then:

Ny= N,
E,=E,+W,+6
Sy, =S,
W,=0.

These equations are illustrated in Figure 19.

Similar equations may be used if the parent of v is to the north, east, or south
of v.

If v is a leaf then all of N,, E,, S,, W, are zero. A bottom up traversal may
be used to compute N,, E,, S,, W, for nonleaves v. Once these parameters are
computed the location of the vertex can be determined by a top down traversal.
The algorithm is called H;.

The following properties of Algorithm H; are easy to prove.

Theorem 7. The output of Algorithm H, is planar. il

Theorem 8. All edges in the output of Algorithm H, are either horizontal or
vertical. |

31



Theorem 9. Suppose that a binary tree T = (V, E) of diameter D > 2 is drawn

e n e - e - = = - - - . = - —— =

£=E,

w w %
+.
A Mw m
+ +
N“ Nu YM
] n -m
- s
e I e e T - boos]
=
B H ittt e T o
i< B
n =
[ [
" P § R
] ] (7,9
, N
1
| o
o ]fﬂ 0 1 M .w o
1 3 2 ' «\
-
[ “ WW .m
9 Vet B
s i m
I
_ - B
[ " . L)
| -
_ v
D o cnn e o e o e T S T e e
i e
=
-
-




by Algorithm H,, and
L = max p{ u p( v)ll,
(u,u)EE“ ) )“

= min, [[p(u) - (9]

Then
L<LID
|
Theorem 10. Suppose that a tree of diameter D is drawn by Algorithm H.
Define B
i m —_—
u,uE%fv"p(u) p(v)“’
k= mi - .
min [lp(u) - p(v)]|
Then 1
k> —K.
- D
E
Theorem 11. Suppose that v is a vertex of degree 2 in the output of Algorithm
H; on T. Then the edges incident with v form a straight line. |

This algorithm gives good results for binary trees. Sample results are in Fig-
ure 18.

6. Other Algorithms

Several other algorithms for drawing free trees are available. The VLSI literature
gives algorithms for drawing free trees in linear area [19,25] and without bends
in the edges [21]. Note, however, that the compactness of VLSI layout is not
necessarily desirable for display, because the drawing can be very “tangled”.

An interesting method is the “garden” layout. The longest path of the tree is
drawn as a straight line along the bottom of the page, and the remainder of the
tree “grows” upward from the path using rood tree drawing algorithms; this is
illustrated in Figure 21. The diagrams may be compacted using a method similar
to [18].

7. Remarks

All of the algorithms described in this paper, and many other tree drawing al-
gorithms, have been implemented in the SPREMB graph drawing system [16].
Experience indicates that one can expect a good clear layout of a free tree with
trees with 100 vertices on a canvas of size 150mm x 150mm, using circle of ra-
dius 1.2mm for each vertex.

33



Figure 20: Sample output from Algorithm H,

Y Wm@

Figure 21: Example of a garden layout

Many of the algorithms have provably good properties, and it would be inter-
esting to discover new algorithms which perform better with respect to variance
in edge length and minimum distance between vertices. However, it is unlikely

34




that a universal tree drawing algorithm (which performs well for all trees) will
be discovered. For a graph drawing system it seems more feasible to provide a
number of algorithms and allow the user to choose a suitable layout.

Acknowledgement

The author is grateful for support from Fujitsu Laboratories, especially from Kozo
Sugiyama and Kazuo Misue.

References

1. M.A Bernard, On the automated drawing of graphs, Proceedings of the Third
Caribbean Conference on Combinatorics and Computing (1981), 43-55.

2. J.A. Bondy and U.S.R. Murty, “Graph Theory with Applications”, MacMil-
lan, 1977.

3. FJ. Brandenburg, Nice drawing of graphs and trees are compultationally
hard., Technical Report MIP-8820, Fakultat fur Mathematik und Informatik,
University of Passau (1988).

4. R. Davidson and D. Harel, Drawing graphs nicely using simulated annealing.
(to appear).

5. P.Eades, A heuristic for graph drawing, Congressus Numerantium 42 (1984),
149-169.

6. P. Eades, X. Lin, and T. Lin, Two tree drawing conventions, in “Computa-
tional Geometry and its Applications”, 1991. (to appear).

7. C. Esposito, Graph graphics: Theory and practice, Computers and Mathe-
matics with Applications 15(4) (1988), 247-253.

8. T. Fruchterman and E. Reingold, Graph drawing by force-directed place-
ment, Technical Report UIUCDCS-R-90-1609, UILU-ENG-90-1748, De-
partment of Computer Science, University of Illinois at Urbana Champaign
(1990). (to appear in Software Practice and Experience).

9. J. Hopcroft and R. Tarjan, Isomorphism of planar graphs, in “Complexity of
Computer Computations”, R. Miller and J. Thatcher, editors, Plenum, 1972,

10. T. Kamada, Symmetric graph drawing by a spring algorithm and its appli-
cation to radial drawing. (to appear).

11. T. Kamada, Visualizing Abstract Objects and Relations, “Computer Science”,
Volume 5, World Scientific, Singapore, 1989.

12. T. Kamada and S. Kawai, An algorithm for drawing general undirected graphs,
Information Processing Letters 31(1) (1989), 7-15.

13. D. Knuth, Seminumerical Algorithms, “The Art of Computer Programming”,
Volume 2, Addison Wesley, 1981.

14. X. Lin, Springs and symmetry. (to appear).

15. J. Manning and M J. Atallah, Fast detection and display of symmetry in trees,
Congressus Numerantium (1989).

35



16. I Fogg, P. Eades, and D. Kelly, Spremb: a system for developing graph al-
gorithms, Congressus Numerantium 66 (1988), 123-140.

17. R.C. Read, Methods for computer display and manipulation of graphs, and
the corresponding algorithms, Technical Report CORR 86-12, Faculty of
Mathematics, University of Waterloo (1986).

18. E. Reingold and J. Tilford, Tidier drawings of trees, IEEE Transactions on
Software Engineering SE-7(2) (1981), 223-228.

19. Y. Shiloach, Arrangements of Planar Graphs on the Planar Lattice, Ph.D.
thesis, Weizmann Institute of Science, Rehovot, Israel (1976).

20. K. Supowit and E. Reingold, The complexity of drawing trees nicely, Acta
Informatica 18 (1983), 377-392.

21. R. Tamassia, On embedding a graph in the grid with a minimum number of
bends, SIAM Journal on Computing 16(3) (1981), 421-444.

22. ).S. Tilford, Tree drawing algorithms, Master’s thesis, Department of Com-
puter Science, University of Illinois at Urbana Champaign (1981).

23. W.T. Tutte, Convex representations of graphs, Proc. London Math. Soc. 10(3)
(1960), 304-320.

24. W.T. Tutte, How to draw a graph, Proc. London Math. Soc. 13(3) (1963),
743-768.

25. L. Valiant, Universality considerations in VLSI circuits, IEEE Transactions
on Computers C-30(2) (1987), 135-140.

26. J. Vaucher, Pretty printing of trees, Software Practice and Experience 10(7)
(1980), 553-561.

27. C. Wetherall and A. Shannon, Tidy drawings of trees, IEEE Transactions on
Software Engineering SE-5(5) (1979), 514-520.

28. S. Whitesides and R. Zhao, On the placement of Euclidean trees, Techni-
cal Report SOCS-89.03, School of Computer Science, McGill University
(1989).

36




	eades1
	Bild1
	Bild2
	eades2

