
Drawing Free Trees

PeterEades

Department of Computer Science 1

University of Newcastle
Newcastle, NSW
Australia, 2308

e-mail: eades@cs.newcastle.edu.au

Abstract. Trees Aremodels of varicus strucnrres in computing IIld it is not surprising
that considerable efforts have been made toward effective drawing algorithrns for them.
This paper discasses drawing algorithms for "free trees", that is, trees with no special
rooL The aim of these algorithms is to provide a drawing which satisfies several aes-
thetic criteria, such as avoiding edge crossings, minimizing variance in edge leagih, and
keeping vertices a reasonable distance apart. In this paper we measure the cffectiveness
of the algorithrns presented by proving or disproving that they achieve such eriteri a,

1. IBtroouction
Trees are models of various structures in computing and it is not surprising that

considerable efforts have been made 10 create effective drawing algorithms for
tbem, Most interest has been in drawing rooted trees [6,13,18,20~2,26,27] be-
cause such trees are ubiquitous.

In this paper we consider drawing algorithms for "free trees n, that is, trees with
no special root A drawing of a free tree is in Figure 1.

Such trees are frequently used in Combinatorial Mathematics, and occur in
Computing as spanning trees and networks. But the rnost significant motivation
for drawing them is that a11general graph drawing systems inc1ude a module for
drawing trees. The reason lies in the most common method for drawing a COD-

nected graph. A connected graph is partitioned into biconnected components and
each biconnected component is drawn separately. Roughly speaking, the bicon-
nected components form a tree structure (called the "block-cutpoint tree"), and
we need a free tree drawing algorithm to "glue" the drawings of the biconnected
components together. Tbe method is described more fully in [17) and illustrated
in Figure 2.

Compared to the wealth of literature on rooted irees, there little previous work
on drawing free trees (the subject is mentioned in passing in [3,5,7,8,12,17], and
more expliciUy in [15,10]). The algorithms which are used in graph drawing sys-
tems are usually naive and attributed to folklore. In this paper we survey and
discuss these algorithms and some of their variations.

1Wrinen while the author was visiting the International Institute for Advanced Study of Social Infor-
mation Science, Fujitsu Laboratories Lid .• 140 Miyamoto, Numazu-shi, Shimoka 410-03, Japan

Bulletin or the ICA, Volume 5 (1992) 10-36

Figure 1: Example of a free tree

The aim of graph drawing algorithms is to provide a drawings which satisfy
several aesthetic criteria, such as

• edge crossings are avoided.
• edges are as straight as possible.
• the length of edges is uniform.
• the distance between vertices is not too small.

There are many other criteria which are desirable; the above list is just a sampie.
In many cases it is possible to state such criteria in a precise mathematical way
and prove or disprove that a particular algorithrn achieves a particular criterion, or
even to prove that achieving a particular criterion is NP-hard: see, for instance, [3].
Here we attempt to measure tree drawing algorithrns against the kind of criteria
above.

2. Terminology
Graph-theoretic terminology is mostly from [2]. The degree of vertex tJ is denoted
by degv• The graph-theoretic distance, or distance, between two vertices fj and tJ

is the number of edges on the path joining fj and 1.1and is denoted by d(fj I 1.1). The
diameter of a tree T = (VI E) is max u,vEV d(fj I 1.1) •

The Euc1idean distance between two points 0 and b in the plane is denoted by
110 - bll·

All drawings discussed represent edges as straight lines between vertices, so a

11

A

Figure 2: Block-cutpoint tree

cuipoints

drawing is completely determined by the posiuons of the vertices. Thus a drawing
p of a tree T = (V, E) is a function p : V -+ R2; p(u) is the location of vertex u.
Where confusion is unlikely we sometimes use the same symbol to denote both a
vertex and the position of the vertex.

3. Radial Drawings
Radial drawings are weIl known in the folklore, probably originating in Ron

Read's GRAX system (see [17]) of the late 1970s. Aigorithms for such drawings
are very similar to simple algorithrns for drawing rooted trees. A root is chosen
and drawn at the centre of the page. Nonroot vertices are arranged on concentric
circles about the root. The subtrees of avertex are drawn within annulus wedges
of sizes determined by the sizes of the subtrees.

The basic concepts of this method are illustrated in Figure 3.

12

Annulus wedge

ror subtrce
undc:r v

' ..

. . . •. - . - . ~. .

Figure 3: Radial algorithms

There are many variations of the basic method, depending on the choice of root,
the radii of the circles, and the method Ior determining the size of the annulus
wedge: see [1,7,15,17]. We shall describe a particular variation called Algorithm
R, below.

The root is chosen to be the centre of the tree. A central vertex of a tree T =
(V, E) is avertex c such that

max d(c, u)
tlev

is minimized. It can be shown [2] that a tree has either a unique central vertex
or two adjacent central vertices. If T has a unique central vertex then this is the
centre; otherwise the centre is the edge joining the two central vertices. The centre
can be found in linear time using a simple leaf pruning algorithm: If T contains
any nonleaves, then remove all the leaves of T to form a new tree T'; the centre
of T is the same as the centre of T' .

13

The choice of a root means that we can use the terminology of rooted trees. For
instance, the deptb of avertex tJ is the distance between 1) and its elosest central
vertex. The subtree under tJ for some vertex v consists of vertices and edges on
paths between v and a leaf which do not contain a central vertex.

If the centre is a vertex then itis placed at the centre of the page; if the centre
is an edge then it is drawn as a horizontal line of length 8 (where 8 is a constant)
in the centre of the page.

Non-central vertices are assigned to concentric circles Cl, DJ., ... ,CIe, centred
at the centre of the page, where k is the largest depth of a leaf. If the centre is a
vertex then the radius of C; is (i + 1) 8, otherwise it is (i + t) 8. Vertices of depth
i are placed on circle Ci. Thus, in asense, vertices are placed as elose as possible
to the root.

The width w(u) of avertex u is the number of leaves in the subtree under u.
It seems reasonable to draw the subtree under v in an annulus wedge with angle
proportional to w(v). However, this can lead to edge crossings, because an edge
with endpoints within an annulus wedge of large angle can extend outside the
annulus edge and intersect other edges, as in Figure 4 .

.... . q .

...........••••.•••. <:;..;.,•..•..•.•..........

....

The edge
{u.v]

"escapes"

the annulu

wedge

..'

~
annulus wcdgc

for the subtrce
undcr v

.{

Figure 4: Edges escaping from an annulus wedge

14

The solution is to restriet the vertices to a convex subset of the wedge. Suppose
that v lies on Ci, and that the tangent to Ci through v meets Ci+ 1 at a and b as in
Figure 5. . .

'.
..... c.

I

.,"

~.,

.," p..'..'

~....

............. ~ -J ~ ~----------_
I ::,

, . f
P ~.'ttp) .'

•••.oC_~_d' ,:,"

\.... ./
", /
• J

J

/
J

• .1
~~~~~".,"

" ".".,,-'

Region F

<.
..•..............................•....... '. b

\
\
\
\
\
\

\,,

Figure 5: Convex subset of the wedge

Note that the unbounded region F in Figure 5, formed by the line segment ab,
and the radii through a and b, is convex; thusany edge with endpoints in F cannot
leave F. So we restriet the subtrees under v to He within the region F. If the
radius of Ci is P then we denote the angle between the radii through a and b by
T( p); note that

T(p) = z cos :' C: 6)·
The restrietion to F effectively restriets the subtrees to He within a wedge of angle
T(p).

The algorithm is stated below using this notation. The subroutine
DrawSubTreel(v, P, ~l, 0:2) draws the subtree rooted at vertex v in the annulus
wedge {( T, ()) : T > o, 0:1 < ()~ 0:2}.

15



AJgoriJhm Rl (T = (V, E): tree)
U the centre of T is avertex 11,

then Draw'Sub'Tree lfu, 0,0,2 '11)

else ( U, v) +- centre of T
DrawSubTreel(u,l, ~, f):
DrawSub'Tree lfu, f, f, J.f)

AJgoriJhm DrawSubTree1(11, p, al I lW2)

1. p{ v) +- the point with polar coordinates (P, ~ ) .
2. ifT{p) < Q2 - al

then 8 +- j~);a +- 0\ +,-np)

else 8 +- ~-v)1 a +- al
3. fOTeach child U of tI do

DrawSubTreel(u,p+ eS, a, a + 8. w( u)
a •.....a+ 8*W(U)

Figure 6(a}-{d) shows sam ples of the output of Rt.
It is immediate that Algorithm Rl runs in linear time.
Next we prove some that the output of Algorithm Rl satisfies some of the de-

sired aesthetic criteria.
The first result establishes planarity.

Theorem 1. Tbe output of Algorithm Rl is planar.

Proof: Note that every edge lies within an annulus between C, and Ci+1 for some
i. However, it is impossible for two such edges to cross, because distinct subtrees
are assigned to disjoint annulus wedges by Algorithm R; . •

The next result bounds the variation in edge length.

Theorem 2. Suppose that AJgorithm R, retums a drawing p : V -. R2 on a
tree T = (V, E) of dismeter D > 2 and Jargest äegree ~ • and

L = rnax IIp( u) - p( tJ)lI,
(u,v)EE

l = min IIp( u) - p( v) 11·
(" •.,)EE

Then

L < l~ 1+ ~ (D - 2) (1 - cos ( (1 - Ö ~ 1) COS-1 (1 - ~)))
Proof: For notational convenience asswne that ö = 1. It follows that l > 1.

Now consider a vertex v on circle Ci of radius p. We shall compute abound on
the length of edges from tl to its children.

16



Figure 6:(a)-{d): Sampie output from Algorithm R,

The subtree under tJ is drawn within an annulus wedge with angle ß; note from
Algorithm Rv that

ß < r(p). (1)

Suppose that Algorithm R; places a child U of tJ at a radial angle () from tJ as in
Figure 7.

Note that Algorithm R: ensures that

()< (1 __ 1_) ß.
- w( v) 2

(2)

17







Theorem 3. Suppose that a tree of diametcr D > 2 and w lcsves is drawn by
AJgorithm R1. Veline

K = max lIP(u) - p(v)II,
u,lIEV

k= min IIp(u)-p(v)ll.
u,lIEv,ufll

Then

k > min (1,3 sin C ~1COS-1 G))) ~
Proof: Again assume that ö = 1. The Theorem c1early holds for w = 2, so we
only consider the ease w > 3.

Since the entire drawing is enclosed in a eircle of diameter D, we have

(8)

If u and v are on separate cireles, then

IIP(u) - p( v) 11> 1

and the Theorem holds.
Now suppose that v is on a eircle of radius Pli and the angle of the wedge as-

signed to v is ßII' Denote Pli sin(~) by 0ll; note that for any two vertices u and v
on the same circle,

(9)

We will show that for every vertex u,

3 . (1 -1 (1) )
°ll > 2" sm w _ 1 eos 3"' (10)

The Theorem then follows from (8), (9) and (10).
Firstly note that either

ßII = 21TW( v)
W

(11)

or for some ancestor z of v,

ßu = T{pz)w( v) .
w(z)

(12)

In ease (11), we have

. ( 2 7rw( v) ) . ( 7r )
°ll = Pli sm w > sm w

20



Figure 9: Worst case for vertex separation for Algorithm Rl

But a simple check reveals that for w > 3,

. (1T) 3. (1 -1 (I))sm w > 2" sm w _ 1 cos 3" .

Por case (12) observe that since w( u) > 1 and it is impossible for every leaf to
be in the subtree under z,

ß > r(pz) .
" - 1w-

Also, since z is an ancestor of u, pz < p" - 1 and thus r(pz) > r(pl) - 1). Thus

and it follows that

. ( T(PI) - 1)) . (1 -1 (pI) - 1) )
0" > Pli sm 2( w _ 1) = Pli sm w _ 1 COS Pli • (13)

But the right band side of inequality (13) is increasing with pI), and the minimum
value of PI) is t; the inequality (10) follows. •

The bound in Theorem 3 is worst far graphs with high diameter and many
leaves: an example is in Figure 9.

21



-

The following tabulation of D, w, and the minimum value of k] K in Theorem 3
gives an idea of the size of the bound. The Corollary below also gives a simple
expression of the bound.

D w K/k
20 50 0.0065
20 100 0.0032
50 100 0.0020
50 200 0.0010

Corollary 2. Suppose ths: Algorithm Rl givcs s drswing p : V ~ R2 fora tree
T = (V, E) of dismetcr D > 2 witb w lesves, and

K = max I/P(u) - p(v)II,
v,vEV

k = min I/V( u) - V( v) 1/ .
u,lIEV,u,!v

Then

k . ( 3.6) K> mm 1, -.w-l D

•
All the edges in the drawing are straight lines. To make it easy to follow paths

in the drawing, it is desirable that paths follow a straight line as well. We can
show that although paths of vertices of degree two are not always straight in R,
drawings, long paths are mostly straight

Theorem 4. Suppose that v is s vcrtex of degree 2, in tbe output of Algorithni
RI on T, and the degree of at least one neighbor of v is 2. Ttien the edge« inciäent
with tJ form a straight line. •

A minor variation of Algorithm R; is sometimes useful. Basically, we place
each vertex v on the circle C"-i where k is the maximum depth of a vertex in
the tree and i is the distance from v 10 the closest leaf. To write this algorithm
concisely, we denote the maximum distance from avertex v to a leaf in the sub-
tree under v by h( v). Note that h can be computed in linear time. The result is
algorithm R2 below.

22



Algorilhm R2
If the centre is avertex v,
then DrawSubTree2(v, °,0 ,2'11")
else ( 16, v) +- centre of T

DrawSubTree2(u, (h(u) + 0.5)5, 'J.!, f)
DrawSubTree2(v, (h(u) + 0.5)6, f,~)

Algorilhm DrawSubTree2(v, p, al ,~)
Lplace tJ at the point with polar coordinates (p, ~ ).
2.ifT{p) < a2 - al
then & +- n&. a +- QI+!2-!(p)~, 2
eise & +- ~-,,)Ia +- al
3.for each child u of tI do

DrawSubTree2(u, h( u), a, a + & * w( u»
a -a+ &*w(u)

Figure 10{a}--{d)shows sampies of the OUtputof R2.
Planarity of the OUtputcan be established in a similar argument as for Algorithm

RI. The length of edges varies more widely for Algorithm R2 than for RI, but
R2 tends 10 have better minimum distance between vertices.

Bemard [B] has noted that a radial layout similar to Rl can be used to draw trees
symmetrically. It is comparatively easy 10 find automorphisms of trees (see, for
example, [9]), and all automorphisms preserve the centre and the depth ofvertices.
Further symmetry oriented radial algorithrns are presented in [10,15].

4. Spring Drawings
Spring algorithms use a concept of energy '1 defined for each drawing of a graph.
The energy is defined so that smaller values of '1 indicate "nicer" drawings. The
algorithms try to find drawings wilh '1 as small as possible. A particu1ar spring
algorithm is defined by a choice of energy function '1and a method for minimizing
'1.

The simplest spring algorithm is from [5]. Intuitively adjacent vertices are con-
nected with logarithmic strength "springs" , and non-adjacent vertices repel each
other with a force govemed by an inverse square law. Note that a small energy
indicates that the distance between adjacent vertices is about one unit and non-
adjacent vertices are reasonably far apart. A drawing with a Iocally minimal en-
ergy may be found by a steepest descent method: an initial layout is chosen, then
the layout is progressively improved by moving each vertex to a position with less
energy. Trees drawn wilh this algorithm are shown in Figure l1(a}-{d).

An often noted problem with this approach is that it is possible for a planar graph
to give a nonplanar drawing, even for trees: see [4,5,8]. For example, Figure 12
shows a drawing with Iocally minimal energy and many crossings.

One can overcome this problem by choosing the initial layout 10 be planar. We

23



Figure 10(aHd): SampIe outpur from Algorithm R2

conjecture, but have been unable to prove, that this approach gives a planar draw-
ing.

Conjecture. Supposc tnst a drawing of a tree is obudncd by a simple spring
algorithm desctibeä sbove, using tbc the output of Algorithm Rl as the initial
layout. Tben the drawing is planar.

In fact it seems 10 be very difficult to prove properties of spring algorithms:
with the exception of [14], most research in this area is informal, using extensive
examples rather than mathematica1 proof to support claims. However, we we can
show that another spring algorithm adapted from [23,24] gives planar drawings.
Suppose that the leaves of a tree drawing are fixed in position, and edges are re-

24



Figure 11:(a)-(d): SampIe output from simple spring algorithm

placed by lengths of a kind of elastic cord. This elastic cord exerts a force on its
endpoints proportional to the square of distance between the endpoints, so that the
force acting on avertex v is

I: IIp(u)-p(v)W·
(u,,,)EE

The sum of these forces is minimized when the partial derivatives are zero, so a
minimum energy layout requires that

1
p(v)=- I: p(u)

deg"
(u,v)EE

(14)

25



Figure 12: Poor result from simple spring algorithm

foreaeh vertex u. Tbe equations (14) simply say thateach nonleaf vertex is located
at the barycentre or average of the locations of its graph-theoretic neighbors.

The positions of the leaves ean be fixed by one of the two algorithms RI and
R2 in the previous section. The equations may be solved by a simple numerical
iteration (see [17]). For instance, we can define Aigorithm Tl as folIows:

AJgoriJltm Tl
AlgoriJltm DrawSubTrce2(v, p, 011 ,012)

1.Apply Algorithrn R1
2.Repeat until error is small:

for each nonleaf v do p( v) +- di~v E.ENv p( u)

We can similarly defineAlgorithm T2 using R2 instead of R, to fix the leaves.
Results of Algorithms Tl and T2 are in Figure 13.

Theorem 5. Tbc output of Algorithm T2 is planar. I
Proof: Consider the graph formed from a tree T by joining leaves in a eycle in
depth-first order. This is a planar 3-eonnected graph, and if it is drawn by Algo-
rithm T2. the leaves form a convex polygon. It follows from Tutte's Theorem [23]
that the drawing is planar. I

We believe, but have been unable to prove, that this claim also holds for Tl .

Conjecture 2. The output of Algorithm Tl is plsiuu:

Both algorithms give straight line paths of vertices of degree 2.

26



s-

Figure 13: SampIe output from Tl and Tz

Theorem 6. Suppose that 1) is s vettex of degree 2. Then, for both AJgorithms
Tl and T2, lhe edges incident with IJ form a straight Iine. I
Proof: This is a simple consequence of the equations (14). •

The minimum distances are sometimes better for Algorithms Tl and T2 than
for RI and R2 t but often they are worse, as one can see from Figure 14.

.Figure 14: Poor result from Tz

The problem is that many vertices gather elose together at the leaves. This can
be overcome 10 some extent by weighting the average in the last line of Algorithm

27



Tl above, that is, replace the last line by

p( v) -+ L tuvp( u)
uENv

where the weights tÜll chosen so that or each 1),

For example, so that vertices may move closer 10 the centre of the diagram (10
avoid situations such as in Figure 14) we can define:

heu)
tÜll = =-----

LWENv h(w)

where h( 1.1) denotes the maximum distance of u a leaf in the subtree under 1.1

(where the root is a central vertex as in the previous situation). The result of
äpplying this to the graphs in Figure 14 is in Figure 15.

Figure 15: SampIe from weighted version of T2

Note that the problem of drawing a tree with fixed leaf positions so that edge
lengths are alllhe same is NP-hard [28].

28



Kamada [10] describes another spring algorithrn aimed at radial drawings of
trees, based on [11]. Intuitively, every pair u, tI of vertices is joined by spring SUfi

with Hooke's Law strength and the zero energy length of Suu is d( u, v). A radial
drawing is used as an initial drawing, and the energy is lowered subject to the
vertices remaining on their original concentric circles about the centre. Intuitively,
the vertices are allowed to "slide" around their circles, but not to leave the circles.
In this way, it seems that the planarity of the radial drawing is preserved (but this
property has not been proved).

Other variations [4,8,11,23,24] cover a range of energy functions. In partic-
ular, the energy funetion defined in [4] encodes variety of aesthetics, including
the minimization of edge crossings; however, to minimize energy, slow simulated
annealing process is necessary.

An attractive aspect of these algorithrns is that their output tends to appear sym-
metric. It can be shown [14], under reasonable assumptions on the energy func-
tion, that there is a drawing with locally minimal energy which displays a maximal
set of automorphisms of the input graph as symmetries.

S. H-tree Drawing

The discussion in this section is limited to binary trees, that is, trees where no
vertex has degree Iarger than 3.

The H-tree layout for a complete binary tree, illustrated in Figure 16, is well
lrnown in the VLSI layout folklore (though originally due to Shiloach [19]) as a
method for obtaining a compact layout of a complete binary tree.

Esposito [7] noted that the ß-tree has some attractive properties as a "nice"
drawing. It is planar, and all edges are either horizontal or vertical straight lines.
However, for binary trees wh ich are not complete, the layout can be very poor, as
in Figure 17.

Here the venices near the leaves are exponentially elose to each other. In this
section we describe a simple variation which keeps a reasonable minimum sepa-
ration between vertices.

For this variation, an edge is chosen as a root. We chose an edge whose re-
moval separates the tree into components such that the difference in the number
of vertices in each component is minimal.

For each vertex v, the subtree under tI is drawn in a reetangle with v inside.
Four parameters Nv, Ev, Sv, Wu are computed for this reetangle representing the
distances from the root v to the perimeter of the reetangle in directions north, east,
south and west respectively, as illustrated in Figure 18.

If tI has children u and w and the parentof v is to the westof v, then the following
equations may be used to compute the parameters of v from the parameters of tL

29



Figure 16: Complete H -tree

...

Figure 17: Poor result from the usual Il-tree algorithm

30



~
I
I

I

I
I

I

:tt
I
I
I

I

I

I

I,~__~ • ()~ s ~

*II
I
I
I
I
I
I

: Sv
•
I
I
I

I
I
I
I

•
V

Figure 18: Parameters for subtree size

andw:
N; = Nu + S; + ,6
Ev = max(Eu• Ew)
Sv = N w + Sw + 6
Wv = max(W'u, Ww),

where 6 is a constant. If v has a single child u and the parent of v is to the west of
u, then:

N; = Nu
EI) = Eu. + Wu + 6
Sv = s;
Wv = O.

These equations are illustrated in Figure 19.
Similar equations may be used if the parent of v is to the north, east, or south

of u,
If 1) is a leaf then all of N v. EI), Sv, Wv are zero. A bottom up traversal may

be used to compute N«, Ev, Sv, Wv for nonleaves v. Once these parameters are
computed the location of the vertex can be detennined by a top down traversal.
The algorithm is called H 1•

The following properties of Algorithrn H1 are easy to prove.

Theorem 7. The output of AJgorithm H1 isplanar. I

Theorem 8. All edges in the output of AJgorithm H 1 sre either horizontal or
verticaJ. •

31



Theorem 9. Suppose that a binary tree T = (VI E) of dismeter D > 2 is drawn

------------------------------------------------------ I

I

I
I

I
I
I

I,
I

I,
I
I
I
I

I

I

I
I
I

I
I
I
I
I
r
I

•
I
I

I

I
I
I
I---------~-~-~-~-~-~-==-~-~-~-~-~-~-~-~-~-~-~-~-==_:_~-~-~-~-~-~-~-~-~-~-~-==-~-~-~-~-~-~-~_~_~_'

I
I
I
I

V

--------~O---+----------~()J
11

~--------------------------------------------------~

,-----
I

I I
I I
I ,
I 0 I
I IA
I
I
I
I
I
I
I
I
I
I
I
I
I
I ,
I I
I I
I ,

I

..., I
V I

I
I
I
I
I,
I,,
I
I,

0
I,

W I,
I,
I
I,
I
I,,
I

I
I
I

I
_________ J

~-----------------~------------~
~ :0 ma.x ( Ei.. EwJ

Figure 19: Computing subtree size from children's sizes

32



by AJgorithm Hv, and

L = max IIP(u)P( u) 11,
(u,tI)EE

l = min IIp( u) - (V) 11.
(u.tjEE

Then
L < lD

•
Theorem 10. Suppose ttuu a tree of dismeter D is drawn by Algorithm H 1.

Detine
K = max IIp( u) - p( v) 11,

u .tlE v,v~"
k = min IIp(u) - p(v)lI.

v.tlEV

Then
1

k> -K.-D
I

Theorem 11. Suppose that v is s vettex of degree 2 in the output of AJgorithm
H2 on T. Then tne edges incident with v form a straight Iine. •

This algorithm gives good results for binary trees. Sample results are in Fig-
ure 18.

6. Other Aigorithms
Several other algorithms for drawing free trees are available. The VLSI literature
gives algorithms for drawing free trees in linear area [19,25] and without bends
in the edges [21]. Note, however, that the eompactness of VLSI layout is not
necessarily desirable for display, because the drawing ean be very "tangled".

An interesting method is the "garden" layout. The longest path of the tree is
drawn as a straight line along the bottom of the page, and the remainder of the
tree "grows" upward from the path using rood tree drawing algorithms; this is
illustrated in Figure 21. The diagrams may be eompacted using a method similar
to [18].

7. Remarks
All of the algorithms deseribed in this paper, and many other tree drawing al-

gorithms, have been implemented in the SPREMB graph drawing system [16].
Experience indieates that one can expect a good c1ear layout of a free tree with
trees with 100 vertices on a canvas of size 150mm x 150mm. using eirele of ra-
dius 1.2mm for each vertex.

33



I
1

!

!
• .

----,. ...•

Figure 20: Sampie output from Algorithm H1

Figure 21: Example of a garden layout

Many of the algorithrns have provably good properties, and it would be inter-
esting to discover new algorithrns which perform beuer with respect to variance
in edge length and minimum distance between vertices. However, it is unlikely

34



that a universal tree drawing algorithm (which performs weil for all trees) will
be discovered. For a graph drawing system it seems more feasible to provide a
number of algorithms and allow the user to choose a suitable layout

Acknowledgement
The author is grateful fOTsupport from Fujitsu Laboratories, especially from Kozo
Sugiyama and Kazuo Misue.

References

1. M.A Bemard, On the automated drawing of graphs, Proceedings ofthe Third
Caribbean Conference on Combinatorics and Computing (1981),43-55.

2. J.A. Bondy and U.S.R. Murty, "Graph Theory with Applications", MacMil-
lan,1977.

3. FJ. Brandenburg, Nice drawing 0/ graphs and trees are computationally
hard., Technical Report MIP-8820, Fakultat fur Mathematik und Informatik,
University of Passau (1988).

4. R. Davidson and D. Harel, Drawing graphs nicely using simulated annealing,
(10 appear).

5. P.Eades,A heuristic for graph drawing, Congressus Numerantium42 (1984),
149-169.

6. P. Eades, X. Lin, and T. Lin, Two tree drawing conventions, in "Computa-
tional Geometry and its Applications", 1991. (to appear).

7. C. Esposito, Graph graphics: Theory and practice, Computers and Mathe-
matics with Applications 15(4) (1988), 247-253.

8. T. Fruchterman and E. Reingold, Graph drawing by force-directed place-
ment, Technical Report UIUCOCS-R-90-1609, UILU-ENG-90-1748, De-
partment of Computer Science, University of Illinois at Urbana Champaign
(1990). (to appear in Software Practice and Experience).

9. J. Hopcroft and R. Tarjan, Isomorphism of planar graphs, in "Cornplexity of
Computer Computations", R. Mil1er and J. Thatcher, editors, Plenum, 1972.

10. T. Kamada, Symmetrie graph drawing bya spring algorithm and its appli-
cation to radial drawing. (to appear).

11. T. Kamada, Yisualizing Abstract Objects and Relations, "Computer Science",
Volume 5, World Scientific, Singapore, 1989.

12. T. Kamada and S. Kawai.Aa algorithmfor drawing generat undirected graphs,
Information Processing Letters 31(1) (1989),7-15.

13. D. Knuth, Seminumerical Algorithms, "The Art of Computer Programrning",
Volume 2, Addison Wesley, 1981.

14. X. Lin, Springs and symmetry. (to appear).
15. J. Manning and MJ. Atallah, Fast detection and display 0/ symmetry in trees,

Congressus Numerantiurn (1989).

35



16. I Fogg, P. Eades, and D. Kelly, Spremb: a system[or developing graph al-
gorithms, Congressus Numerantium 66 (1988), 123-140.

17. R.C. Read, Methods for computer displayand manipulation o[ graphs, and
the corresponding algorithms, Technical Report CORR 86-12, Faculty of
Mathematics, University of Waterloo (1986).

18. E. Reingold and J. Tilford, Tidier drawings o[ trees, IEEE Transsetions on
Software Engineering SE-7(2) (1981),223-228.

19. Y. Shiloach, Arrangements o[ Planar Graphs on the Planar Laitice, Ph.D.
thesis, Weizmann Institute of Science, Rehovot, Israel (1976).

20. K. Supowit and E. Reingold, The complexity o[ drawing trees nicely, Acta
Informatica 18 (1983), 377-392.

21. R. Tamassia, On embedding a graph in the grid with a minimum number of
bends, SIAM Journal on Computing 16(3) (1981).421-444.

22. J.S. Tilford, Tree drawing algorithms, Master's thesis, Department of Com-
puter Science, University of Illinois at Urbana Charnpaign (1981).

23. W.T. Tuue, Convex representations o[graphs, Proc. London Math. Soc. 10(3)
(1960).304-320.

24. W.T. Tulle. How to draw a graph, Proc. London Math. Soc. 13(3) (1963),
743-768.

25. L. Vallant, Universality considerations in VLSI circuits, IEEE Transactions
on Computers C-30(2) (1987). 135-140.

26.]. Vaucher. Pretty printing o[ trees, Software Practice and Experience 10(7)
(1980),553-561.

27. C. Wetherall and A. Shannon, Tidy drawings o[ trees, IEEE Transäetions on
Software Engineering SE-SeS) (1979), 514-520.

28. S. Whitesides and R. Zhao, On the placement o[ Euclidean trees, Techni-
caI Report SOCS-89.03, School of Computer Science, McGill University
(1989).

36

-


	eades1
	Bild1
	Bild2
	eades2

